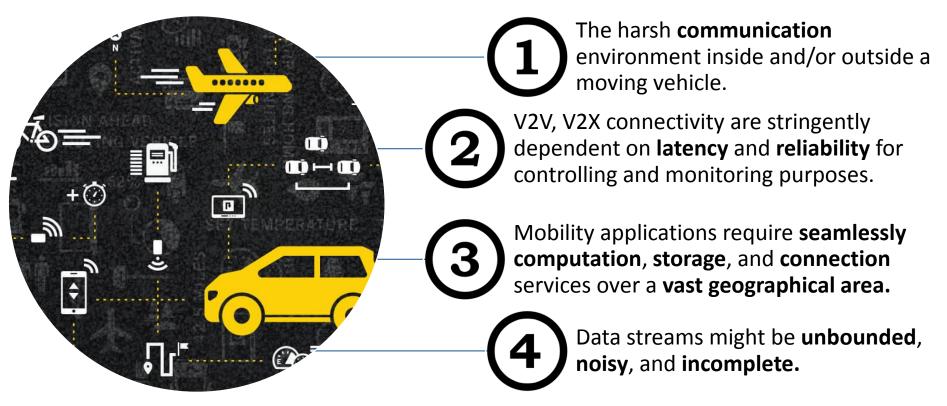


Developing an edge computing platform for real-time descriptive analytics

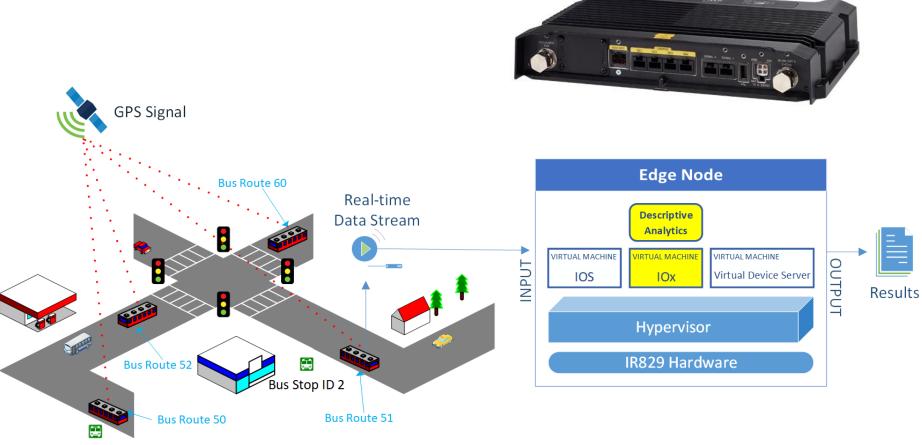
Hung Cao, Monica Wachowicz, Sangwhan Cha



Outline

- Introduction
- Related work
- Edge analytics platform
- Results and Discussion
- Conclusion and Future research

Introduction


Data streams generated by the Internet of Mobile Things (IoMT) poses several challenges

Related work

	Fog computing	Mobile Edge Computing	Mobile Cloud Computing	
Owned & Managed by	Any (Mobile Network Provider, Cloud Service Provider, Organizations, Individuals)	Mobile Network Provider	Private Organization, Individuals	
Target Users	Any user	Available to mobile users	Specific users	
Network Access	Any short and long range networks	Mobile networks	Any short range networks	
Geo-distribution	Any location	Co-located with base station	Static location (data center, cloudlet)	
Computing Environment	Indoor / Outdoor	Indoor / Outdoor	Indoor	
Computing and Storage Capability	Yes	Yes	Yes	
Latency (Delay)	Low latency	Low latency	Ranges from low latency to high latency	
Edge Analytics	Not deployed yet	Not deployed yet	Edge Analytics [21]	

Edge Analytics Platform

Bus Stop ID 1

A. Real-time Data Streaming

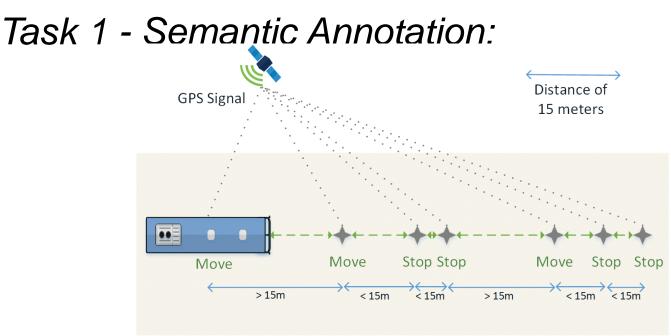
This transit data streams consist of a sequence T_1 , ..., T_n of tuples containing attributes in the format:

$$T_i = (S_i, x_i, y_i, t_i)$$

where

 S_i : is a set of attributes containing telemetry data; x_i , y_i , t_i : are the geographical coordinates x_i , y_i of the device at the sampling time t_i .

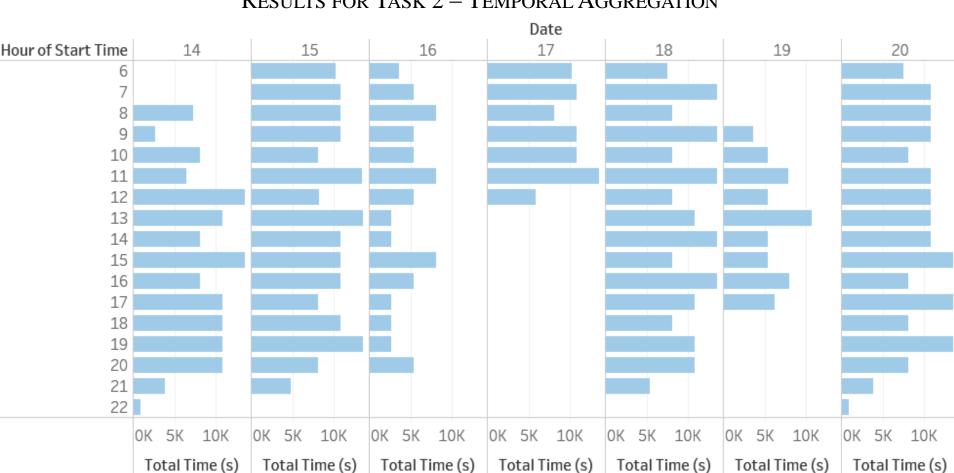
B. Mobile Edge Node


Cisco IR829 Industrial Integrated Services Router:

C. Data Pre-Processing at the Mobile Edge Node

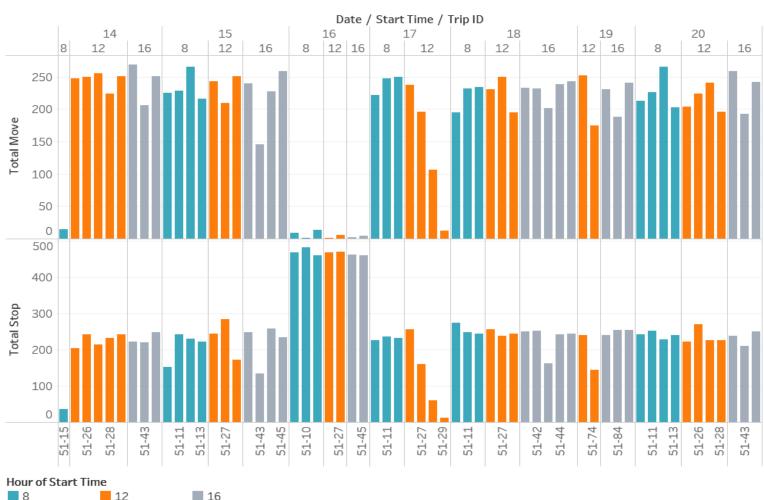
(1)missing tuples
(2)duplicated tuples
(3)missing attribute values
(4)redundant attributes
(5)wrong attribute values

D. Descriptive Analytics at the Mobile Edge Node


D. Descriptive Analytics at the Mobile Edge Node

Task 2 - Temporal Aggregation: At the end of each trip, this task computes

- the actual duration and length of the trip
- the total number of stops
- the total number of moves


Task 3 – Summary Function: It is used to compute the average trip time in the morning (5h-12h), afternoon (13h-18h), and evening (19h-24h).

Results and Discussion

RESULTS FOR TASK 2 – TEMPORAL AGGREGATION

Results and Discussion

RESULTS FOR TASK 2 – MOVES/STOPS AGGREGATION

11/12/2017

Results and Discussion

OVERVIEW OF DESCRIPTIVE STATISTICS FOR TASK 3 – SUMMARY FUNCTION

		Date							
	Period	14	15	16	17	18	19	20	
Average Trip Time (Seconds)	Morning	3,056	2,559	2,563	2,562	2,561	2,400	2,551	
		2,393	2,390	2,691		2,443		2,395	
	Afternoon	2,693	2,693	2,691		2,693	2,532	2,692	
Average Number of Moves	Morning	70	218	10	216	214	191	215	
	Evening	224	208	7		224		203	
	Afternoon	234	211	2		227	214	218	
Average Number of Stops	Morning	288	225	440	221	234	214	231	
	Evening	210	222	473		204		221	
	Afternoon	229	233	460		230	218	238	

Conclusions

- Our experiment has demonstrated the potential of applying edge descriptive analytics for monitoring one bus route.
- However, the proposed edge computing platform supports the scalability to an entire transit system.
- It also paves the way to developing new analytical services at the edge network in the near future in order to solve the challenge of fast-growing data produced by the edge devices and sensors.
- Potential of applying our edge analytical platform in other applications such as autonomous vehicles, smart intersections, and smart traffic light systems

People in Motion Lab

www.people-in-motion-lab.org

